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Abstract. We present a fault tolerant control scheme for robot manip-
ulators based on active inference. The proposed solution makes use of
the sensory prediction errors in the free-energy to simplify the residu-
als and thresholds generation for fault detection and isolation and does
not require additional controllers for fault recovery. Results validating
the benefits in a simulated 2DOF manipulator are presented and the
limitations of the current approach are highlighted.
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1 Introduction

Developing fault tolerant (FT) control schemes is of vital importance to bring
robots outside controlled laboratories. The area of fault tolerant control has be-
come increasingly more important in recent years, and several methods have
been developed in different fields. An extensive bibliographical review and clas-
sification of FT methods can be found in [25]. Model-based FT techniques are
amongst the most promising approaches [8]. For fault detection, they rely on
mathematical models to generate residual signals to be compared to a threshold.
Fault recovery is then often performed by switching among different available
fault-specific controllers [17]. The two main challenges to design FT schemes are
the definition of residuals and thresholds, and the design of a fault specific recov-
ery strategy. We present a novel FT scheme for sensory faults [19, 23] based on
an active inference controller (AIC) [20], which is inspired by the active inference
framework. Active inference is prominent in the neuroscientific literature as a
general theory of the brain [9–11] and several recent approaches in robotics have
taken inspiration from it [1–3, 15, 16, 18, 20–22, 24]. In this work we investigate
the utility of the active inference framework for fault-tolerant control with sen-
sory faults. In the presented scheme, we exploit the properties of the framework
to simplify the definition of both residuals and thresholds, and we provide a sim-
ple and general mechanism for sensory fault recovery. Our approach is validated
on a simulated 2DOF manipulator.
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2 Problem statement

We consider a robot controlled in joint space with torque commands, using
an active inference controller (AIC) [20, 1]. In the following, we highlight the
necessary elements and assumptions to derive an expression for the free-energy
of the system, and the equations for state estimation and control. This study
considers a 2-DOF robot arm, equipped with a vision system to retrieve the
end effector Cartesian position yv = [yvx , yvz ]>, and with position and velocity
sensors yq, yq̇ ∈ R2 for the two joints. Thus, we define y = [yq, yq̇, yv]. The
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Fig. 1. 2-DOF robot arm and general AIC control scheme.

proprioceptive sensors and the camera are affected by zero mean Gaussian noise
η = [ηq, ηq̇, ηv]. Additionally, the camera is affected by barrel distortion. The
states x to be controlled are set as the joint positions q of the robot arm. We
define the generative model of the state dynamics f(·) such that the robot will
be steered to a desired joint configuration µd following the dynamics of a first
order linear system with time constant τ .

f(µ) = (µd − µ)τ−1 (1)

The relation between µ and y is expressed through the generative model of the
sensory input g = [gq, gq̇, gv]. Since we set x = [q1, q2]> and we can directly
measure joint positions, gq and gq̇ and their partial derivatives are [20, 7]:

gq(µ) = µ, gq̇(µ) = µ′, ∂gq(µ)/∂µ = 1, ∂gq̇(µ)/∂µ′ = 1 (2)

Note that µ′ is the first order generalised motion of µ. To define gv(µ), instead,
we use a Gaussian Process Regression (GPR) as in [16]. The training data is
composed by a set of observations of the camera output [ȳvx , ȳvz ]> in several
robot configurations ȳq. We use a squared exponential kernel k of the form:

k(yqi ,yqj ) = σ2
f exp

(
− 1

2 (yqi − yqj )>Λ(yqi − yqj )
)

+ σ2
ndij

where yqi , yqj ∈ ȳq, and dij is the Kronecker delta function. Λ is a diagonal
matrix of hyperparameters to be optimised. It holds then:

gv(yq∗) =

[
K∗K

−1ȳvx
K∗K

−1ȳvz

]
gv(yq∗)′ =

[
−Λ−1(yq∗ − ȳq)>[k(yq∗ , ȳq)

> ·αx]
−Λ−1(yq∗ − ȳq)>[k(yq∗ , ȳq)

> ·αz]

]
(3)
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where · means element-wise multiplication, αx = K−1ȳvx and αz = K−1ȳvz ,
with K being the covariance matrix.

Given the generative models f and g as before, we can define an expression
for the free-energy F . Under Laplace approximation, and considering normally
distributed uncorrelated noise and generalised motions up to second order, the
free-energy for the 2-DOF robot arm can be expressed as:

F =
1

2

∑
i

(
ε>i Piεi + ln |Pi|

)
+ C, i ∈ {yq, yq̇, yv, µ, µ′} (4)

where and C is a constant and Pi defines a precision (or inverse covariance)
matrix. Note that we set τ = 1 as in [20]. The terms εi = (yi − gi(µ)) with i ∈
{yq, yq̇, yv} are the Sensory Prediction Errors (SPE), representing the difference
between observed sensory input and expected one. The model prediction errors
are instead defined considering the desired state dynamics as εµ = (µ′ − f(µ))
and εµ′ = (µ′′−∂f(µ)/∂µµ′). In particular, for the 2-DOF example it results that
εq = (yq − µ), εq̇ = (yq̇ − µ′), εv = (yv − gv(µ)), and εµ = (µ′ + µ − µd),
εµ′ = (µ′′+µ′). For more details on the derivation of equation (4), an interested
reader can refer to [20, 6, 7].

Finally, one can compute the generalised state estimates µ, µ′, and µ′′, and
control actions u by minimizing F through gradient descent [11]:

µ̇ = µ′ − κµ
∂F
∂µ

, µ̇′ = µ′′ − κµ
∂F
∂µ′

, µ̇′′ = −κµ
∂F
∂µ′′

(5)

u̇ = −κa
∂yq
∂u

Pyq (yq − µ)− κa
∂yq̇
∂u

Pyq̇ (yq̇ − µ′)− κa
∂yv
∂u

Pyv (yv − gv(µ)) (6)

Note that Pyq , Pyq̇ and Pyv are the precision matrices representing the confidence
about sensory inputs. The higher the confidence in a sensor, the more reliable its
measurements are assumed to be. Following [18, 20], we set ∂yq/∂u and ∂yq̇/∂u
to the identity, approximating the true relationships with only their sign. Similar
considerations can be made for the relation between commanded torques and
Cartesian displacements. The sign of ∂yv/∂u depends on the combination of the
two joint angles. For instance, operating the end effector in the fourth quadrant
with −π/2 ≤ q1 ≤ 0, a positive u1 will lead to positive increments of both x and
z coordinates. More advanced methods to determine these partial derivatives are
out of the scope of this work, but definitely possible and encouraged.

3 A fault tolerant scheme based on active inference

In this section we define a fault tolerant scheme as in Fig. 2, using the SPE to
build residuals for fault detection. We also show how the sensory redundancy
and precision matrices can be used for fault recovery, such that we do not need
to generate extra signals for detection as in conventional approaches, and we
simplify fault recovery.
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Fig. 2. AIC with additional elements (in gray) for fault tolerant control.

Threshold for fault detection and isolation (FDI) Even though the SPE
can be seen as residuals for fault detection purposes, there is a substantial differ-
ence. In active inference, the belief µ is biased towards a given goal, so the SPE
can also increase for causes which are not related to sensory faults (i.e. the robot
is stuck due to a collision). This precludes the use of established fault detection
techniques to define a threshold ψm for FDI. To solve this issue we consider the
quadratic form ε>mPymεm, where εm = ym − gm(µ) with m ∈ {q, q̇, v}. The
core idea is to compute an upper bound on this quadratic term. The first step is
to compute an estimate for the prediction errors using the generative model as
ε̂m = gm(x̂)− gm(µ). The estimate of the joint positions x̂ is obtained through
a filter using position and velocity measurements. Defining ẋ = z, we can write:

˙̂x = ẑ +H1(yq − x̂) ˙̂z = H2(yq̇ − ẑ) (7)

where H1, H2 are diagonal positive definite matrices. The estimation error can
be made arbitrary small by choosing high gains H1 and H2 [12].

We can represent the sensory input y as a function of the ground truth x as:

y = g(x) + γ + η , (8)

where γ ∈ R6 is a vector representing the process uncertainties introduced by
the generative models g, and η is the measurement noise. The sensory prediction
error for a generic sensor m can then be written as:

εm = ε̂m + gm(x)− gm(x̂) + γm + ηm︸ ︷︷ ︸
δm

= ε̂m + δm (9)

where δm is the total uncertainty including process and measurement noise. The
j-th entry δm(j) is a scalar total uncertainty associated with a specific sensor.
Since we operate the robot in a finite workspace, with specific physical limits,
the states of the system x, the sensory input y and the internal belief µ remain
bounded in a compact regionR = Rx×Ry×Rµ ⊂ R2×R6×R2, before and after
the occurrence of a fault. We also suppose that the noise η affecting the position
and velocity sensors, and the camera, can be bounded. This means ||η(t)||2 ≤ η̄,
where η̄ is a known value. Since the AIC does not require the full dynamical
model of the robot arm, the characterization of the model uncertainties γ due
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to g(·) is straightforward: gq(·) and gq̇(·) are just an identity, so no uncertainty
is introduced, while for gv(·) we can retrieve the model uncertainty from the
covariance matrix of the GPR. The sensory prediction errors εm and ε̂m are
then bounded quantities, thus we can define an upper bound for the quadratic
term ε>mPymεm.

Definition 1. Given a maximum uncertainty δ̄m such that |δm(j)| ≤ δ̄m(j) ∀j,
we define a threshold for fault detection for sensor m as:

ψm = ε̂>mPym ε̂m + 2|ε̂>ymPym δ̄m|+ δ̄
>
mPym δ̄m (10)

Lemma 1. In a faultless case, the quadratic form of the sensory prediction er-
rors for a sensor m will remain below the threshold ψm:

ε>mPymεm ≤ ψm (11)

Proof. Once δ̄m is given, and since Pym is diagonal positive definite, equation
(11) follows from applying the triangular inequality, considering εm as in equa-
tion (9).

Using Lemma 1, a fault in a generic sensor m is detected and isolated whenever
equation (11) is violated, that is when a fault will produce an anomaly in the
sensory input bigger than δ̄m. The value for the maximum uncertainty is chosen
according to the standard deviation of the noise present in the sensors. Note
that, in theory, a bound η̄ may not be finite or could be very large making fault
detection difficult or even impossible. In practice, using multiples of the variance,
we reach an acceptable compromise between false alarms and detectability. Thus,
each entry of δ̄m is set to 5σm where ηm ∼ N (0, σ2

mI). Doing so, the probability
of having a false alarm due to the noise is less that 10−6.

Fault recovery To recover from a fault we exploit the fact that the controller
encodes the precision matrices Pyq , Pyq̇ and Pyv . Once a fault is detected and
isolated, fault recovery can be implemented simply by setting the precision ma-
trix of the faulty sensor to zero, that is Pfm = 0. This is a simple and generic
mechanism to recover for any kind of sensory fault once detected.

4 Simulation results

We control the robot from the initial position q = [−π/2, 0] (rad) to the desired
position µd = [−0.6, 0.5] (rad). A fault is injected either in the encoders or in
the camera during the motion of the robot, at time tf = 2 (s). The maximum
uncertainties are set to δ̄q = [5σq, 5σq]

> and δ̄v = [5σv, 5σv]
>, where σq = 0.001

and σv = 0.01. Figure 3A reports the single normalised SPE ε>mσ
−1
m εm/ψm, that

we call Nεm. Doing so, a fault is detected when the ratio is bigger than one. We
assume two kinds of possible faults: 1) A fault in the encoders: the output related
to the first joint freezes so yq(t) = [q1(tf ), q2(t)]>+ηq for t ≥ tf , and 2) A fault
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in the camera: a misalignment is injected as bias in yv. Figure 3A shows fault
detection and isolation at tDI , when the normalised residual is bigger than 1.
The recovered and non-recovered response of the robot in case of encoder fault
is depicted in Fig. 3B. A similar response is found for camera faults.

Fig. 3. A) Normalised SPE for FDI in case of encoder fault (left) or camera fault
(right). B) Step response with and without recovery action in case of encoder fault.

5 Discussion and conclusion

Consider now equation (1). The time constant τ influences the generative model
of the state dynamics f(·), so the desired evolution of the states. As explained
in [1], the AIC has two extremes depending on the value of τ−1 in the generative
model. If τ−1 → 0, the estimation step has zero bias towards the target. The
control action in this case will never steer the system towards the target. On the
other hand, if τ−1 →∞ the system is completely biased towards the target. That
case is equivalent to a PID controller [1, 4, 5]. For any value in between, there
is a compromise between estimation and control. The estimation and control
are thus ‘coupled’. This has a few limitations. First, the actions are not explicit
in the model, so only sensory faults can be detected, isolated, and recovered.
Second, the estimated state is always biased towards the desired state. Finally,
biasing the state hinders learning model (hyper-)parameters.

What does this mean for the FT scheme presented so far? The bias could
increase the SPE for reasons unrelated to sensory faults, for instance if the
current target state changes to another which is further away from the current
position. This prevents the direct use of the SPE as residuals in combination with
established fault detection techniques, since it would cause several false positives.
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It would then be beneficial to decouple estimation and control. In addition, a
decoupled system could facilitate learning the hyperparameters. This could allow
us to optimise the precision matrices for the SPE instead of setting Pfm to zero,
since the precision matrices would represent the physical noise affecting the
sensors. Decoupling can also help relaxing the assumption on the maximum δ̄m
which now has to be known a priori for the determination of the fault detection
threshold. Approaches where the estimation and control are decoupled (similar
to [3, 13, 14, 24]) for fault tolerance will be explored in future work.

To conclude, in this paper we present a novel approach for FT control based
on active inference. The main novelty is the definition of an on-line threshold
for FDI based on the SPE defined in the free-energy. Fault recovery is achieved
by reducing the precision of faulty sensor to zero, providing a generic recovery
mechanism which significantly simplifies the synthesis of reliable FT controllers.
The main limitation of the proposed approach is that only sensory faults can
be detected and recovered. Simulation results validated the theoretical findings.
Future work will explore FT control with decoupled state-estimation and con-
trol.
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