
Active Inference or Control as Inference?
A Unifying View

Abraham Imohiosen*†, Joe Watson*§, and Jan Peters§

†RWTH Aachen University, Germany
§IAS, Technical University Darmstadt, Germany

abraham.imohiosen@rwth-aachen.de

{watson,peters}@ias.informatik.tu-darmstadt.de

Abstract. Active inference (AI) is a persuasive theoretical framework
from computational neuroscience that seeks to describe action and per-
ception as inference-based computation. However, this framework has
yet to provide practical sensorimotor control algorithms that are com-
petitive with alternative approaches. In this work, we frame active in-
ference through the lens of control as inference (CaI), a body of work
that presents trajectory optimization as inference. From the wider view
of ‘probabilistic numerics’, CaI offers principled, numerically robust op-
timal control solvers that provide uncertainty quantification, and can
scale to nonlinear problems with approximate inference. We show that
AI may be framed as partially-observed CaI when the cost function is
defined specifically in the observation states.
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1 Introduction

Active inference (AI) [2, 4, 5] is a probabilistic framework for sensorimotor be-
havior that enjoyed sustained interest from computational neuroscientists. How-
ever, its formulation has been criticized for its opacity and similarity to optimal
control [7–9], but is seemingly difficult to translate into an equally effective al-
gorithmic form. In this work, we offer a critical analysis of AI from the view of
control as inference (CaI) [1, 11, 14, 21, 24, 28], the synthesis of optimal control
and approximate inference. The goal is to appreciate the insights from the AI
literature, but in a form with computational and theoretical clarity.

2 Background

Here we outline the foundational theory and assumptions in this work.

2.1 Problem Formulation

We specifically consider a known stochastic, continuous, discrete-time, partially-
observed, nonlinear, dynamical system with state x ∈ Rdx , observations y ∈
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Rdy and control inputs u ∈ Rdu , operating over a time horizon T . We de-
fine the states in upper case to denote the variables over the time horizon, i.e.
U = {u0, . . . ,uT−1}. The joint distribution (generative model) p(Y ,X,U) over
these variables factorizes into several interpretable distributions: The dynamics
p(xt+1|xt,ut), observation model p(yt | xt,ut), and behavior policy p(ut | xt).

2.2 Variational Inference for Latent Variable Models

Inference may be described by minimizing the distance between the ‘true’ data
distribution p(·) and a parameterized family qθ(·) [17]. A popular approach is
to minimize the Kullback-Liebler (KL) divergence, e.g. minDKL[qθ || p] w.r.t. θ.
More complex inference tasks can be described by observations y influenced by
unseen latent variables x. Given an observation y∗, maximizing the likelihood
involves integrating over the hidden states, and so is termed the marginal like-
lihood p(y∗) =

∫
p(y=y∗,x)dx. Unfortunately this marginalization is typically

intractable in closed-form. A more useful objective may be obtained by applying
a variational approximation of latent state qθ(x | y∗) = qθ(x | y=y∗) to the log
marginal likelihood and obtaining a lower bound via Jensen’s inequality [17]

log
∫
p(y∗,x)dx = log

∫
p(y∗,x) qθ(x|y

∗)
qθ(x|y∗)dx = logEx∼qθ(·|y∗)

[
p(y∗,x)
qθ(x|y∗)

]
, (1)

≥ Ex∼qθ(·|y∗)
[
log p(y∗,x)

qθ(x|y∗)

]
= -DKL[qθ(x | y∗)||p(x,y∗))], (2)

= Ex∼qθ(·|y∗)[log p(y∗ | x)]− DKL[qθ(x | y∗) || p(x)], (3)

where equations 2, 3 are variations of the ‘evidence lower bound objective’
(ELBO). The expectation maximization algorithm (EM) [17], can be under-
stood via Equation 3 as iteratively estimating the latent states (minimizing the
KL term via q) in the E step and maximizing the likelihood term in the M step.

3 Active Inference

Active Inference frames sensorimotor behaviour as the goal of equilibrium be-
tween its current and desired observations, which in practice can be expressed as
the minimization of a distance between these two quantities. This distance is ex-
pressed using the KL divergence, resulting in a variational free energy objective
as described in Section 2.2. Curiously, AI is motivated directly by the ELBO,
whose negative is referred to in the AI literature as the ‘free energy’ F(·). The
minimization of this quantity, F(y∗,x,u) = DKL[qθ(x,u | y∗) || p(x,u,y∗)], as
a model of behavior (i.e. state estimation and control), has been coined the ‘free
energy principle’.

3.1 Free Energy of the Future

Despite the ELBO not being temporally restricted, AI delineates a ‘future’ free
energy. This free energy is used to describe the distance between future predicted
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and desired observations, where u is directly represented as a policy u = π(x),
so F(y∗t ,xt | π) over the future trajectory is minimized. In active inference, π is
commonly restricted to discrete actions or an ensemble of fixed policies, so infer-
ring p(π) can be approximated through a softmax σ(·) applied to the expected
‘future’ free energies for each policy over t = [τ, . . . , T − 1], with temperature γ
and prior p(π)

p(π | Y ∗) ≈ σ(log p(π) + γ
∑T−1
t=τ F(y∗t ,xt, | π)). (4)

Moreover, for the ‘past’ where t = [0, . . . , τ − 1], minimizing F(·) amounts for
state estimation of x given y. Another consideration is whether the dynamic
and observation models are known or unknown. In this work we assume they are
given, but AI can also include estimating these models from data.

3.2 Active Inference in Practice

Initial AI work was restricted to discrete domains and evaluated on simple grid-
world environments [5, 6]. Later work on continuous state spaces use various
black-box approaches such as cross-entropy [25], evolutionary strategies [26],
and policy gradient [16] to infer π. A model-based method was achieved by
using stochastic VI on expert data [3]. Connections between AI and CaI, per-
forming inference via message passing, have been previously discussed [13, 27].
AI has been applied to real robots for kinematic planning, performing gradient
descent on the free energy using the Laplace approximation every timestep [18].
Despite these various approaches, AI has yet to demonstrate the sophisticated
control achieved by advanced optimal methods, such as differential dynamic
programming [20].

4 Control as Inference

From its origins in probabilistic control design [12], defining a state z ∈ Rdz to
describe the desired system trajectory1 p(Z), optimal control can be expressed as
finding the state-action distribution that minimizes the distance for a generative
model parameterized by θ, which can be framed as a likelihood objective [17]

min DKL[p(Z) || qθ(Z)] ≡ max EZ∼p(·)[log
∫
qθ(Z,X,U)dXdU ]. (5)

When p(Z) simply describes a desired state z∗t , so p(zt) = δ(zt − z∗t ), and the
latent state-action trajectory is approximated by qφ(X,U), the objective (Equa-
tion 5) can be expressed as an ELBO where the ‘data’ is Z∗

maxEX,U∼qφ(·|Z∗)[log qθ(Z∗ |X,U)]−DKL[qφ(X,U | Z∗) | qθ(X,U)], (6)

1 while z could be defined from [x,u]ᵀ, it could also include a transformation, e.g.
applying kinematics to joint space-based control for a cartesian space objective.
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where φ captures the latent state parameterization and θ defines the remaining
terms, i.e. the priors on the system parameters and latent states. This objective
can be optimized using EM, estimating the latent state-action trajectory φ in
the E step and optimizing the remaining unknowns θ in the M step. By exploit-
ing the temporal structure, qφ(X,U | Z∗) can be inferred efficiently in the E
step by factorizing the joint distribution (Equation 7) and applying Bayes rule
recursively

qφ(Z∗,X,U)=qφ(x0)
∏T−1
t=0 qφ(xt+1|xt,ut)

∏T
t=0 qφ(z∗t |xt,ut)qφ(ut|xt), (7)

qφ(xt,ut | z∗0:t) ∝ qφ(z∗t | xt,ut) qφ(xt,ut | z∗0:t−1), (8)

qφ(xt,ut | z∗0:T ) ∝ qφ(xt,ut | xt+1) qφ(xt+1 | z∗0:T ). (9)

Equations 8, 9 are commonly known as Bayesian filtering and smoothing [19].
The key distinction of this framework from state estimation is the handling of u
during the forward pass, as qφ(xt,ut)=qφ(ut | xt)qφ(xt), control is incorporated
into the inference. We can demonstrate this in closed-form with linear Gaussian
inference and linear quadratic optimal control.

4.1 Linear Gaussian Inference & Linear Quadratic Control

While the formulation above is intentionally abstract, it can be grounded clearly
by unifying linear Gaussian dynamical system inference (LGDS, i.e. Kalman
filtering and smoothing) and linear quadratic Gaussian (LQG) optimal con-
trol [22]. While both cases have linear dynamical systems, here LQG is fully-
observed2 and has a quadratic control cost, while the LGDS is partially ob-
served and has a quadratic log-likelihood due to the Gaussian additive un-
certainties. These two domains can be unified by viewing the quadratic con-
trol cost function as an Gaussian observation likelihood. For example, given
zt = xt + ξ, ξ ∼ N (0,Σ) and z∗t = 0 ∀ t,

log qθ(z∗t |xt,ut) = - 12 (dz log 2π + log |Σ|+ xᵀ
tΣ

-1xt) = αxᵀ
tQxt + β (10)

where (α, β) represents the affine transformation mapping the quadratic con-
trol cost xᵀQx to the Gaussian likelihood. As convex objectives are invariant
to affine transforms, this mapping preserves the control problem while translat-
ing it into an inference one. The key unknown here is α, which incorporates Q
into the additive uncertainty ξ, Σ = αQ-1. Moreover, inference is performed
by using message passing [15] in the E step to estimate X and U , while α is
optimized in the M step. This view scales naturally to not just the typical LQG
cost xᵀQx + uᵀRu, but also nonlinear mappings to z by using approximate
inference. While the classic LQG result includes the backward Ricatti equations

2 Confusingly, LQG can refer to both Gaussian disturbance and/or observation noise.
While all varieties share the same optimal solution as LQR, the observation noise
case results in a partially observed system and therefore requires state estimation.
i2c is motivated by the LQR solution and therefore does not consider observation
noise, but it would be straightforward to integrate.
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and an optimal linear control law, the inference setting derives direct parallels
to the backward pass during smoothing [22] and the linear conditional distribu-
tion of the Gaussian, qθ(ut | xt)=N (Ktxt + kt,Σkt) [10] respectively. As the
conditional distribution is linear, updating the prior joint density p(xt,ut) in
the forward pass with updated state estimate x′t corresponds to linear feedback
control w.r.t. the prior

p(u′t) =

∫
p(ut|xt=x′t)p(x′t)dx′t, (11)

µu′t = µut
+Kt(µxt

− µx′t), (12)

Σuu′t = Σuut −ΣuxtΣ
-1
xxt
Σᵀ
xut

+KtΣxx′tK
ᵀ
t , (13)

Kt = Σuxt
Σ-1
xxt

. (14)

From Equation 14, it is evident that the strength of the feedback control depends
on both the certainty in the state and the correlation between the optimal state
and action.

The general EM algorithm for obtaining qθ(x,u) from p(Z) is referred to
as input inference for control (i2c) [28] due to its equivalence with input esti-
mation. Note that for linear Gaussian EM, the ELBO is tight as the variational
distribution is the exact posterior. For nonlinear filtering and smoothing, mature
approximate inference methods such as Taylor approximations, quadrature and
sequential Monte Carlo may be used for efficient and accurate computation [19].

Another aspect to draw attention to is the inclusion of z compared to alternative
CaI formulations, which frame optimality as the probability for some discrete
variable o, p(o=1 | x,u) [14]. Previous discussion on CaI vs AI have framed this
discrete variable as an important distinction. However, it is merely a generaliza-
tion to allow for a general cost function C(·) to be framed as a log-likelihood,
i.e. p(o=1 | x,u) ∝ exp(−αC(x,u)). For the typical state-action cost functions
that are a distance metric in some transformed space, the key consideration is
the choice of observation space z and corresponding exponential density.

5 The Unifying View: Control of the Observations

A key distinction to the AI and CaI formulations described above is that, while
AI combines state estimation and control with a unified objective, CaI focuses on
trajectory optimization. However, this need not be the case. In a similar fashion
to the partially-observed case of LQG, CaI also naturally incorporates obser-
vations [23]. As Section 4 describes i2c through a general Bayesian dynamical
system, the formulation can be readily adapted to include inference using past
measurements. Moreover, as i2c frames the control objective as an observation
likelihood, when z and y are the same transform of x and u, the objective can
also be unified and directly compared to active inference. For ‘measurements’
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Y ∗ = {y∗0 , . . . ,y∗τ -1, z∗τ , . . . ,z∗T−1}, following Equation 5 using the F(·) notation

min DKL[p(Y )||qθ(Y )]= min
∑τ -1
t=0 Fψ(y∗t ,xt,ut)︸ ︷︷ ︸
state estimation

+
∑T -1
t=τ Fψ(z∗t ,xt,ut),︸ ︷︷ ︸

optimal control

(15)

where ψ = {θ,φ}. Here, p(yt)=δ(yt − y∗t ) now also describes the empirical
density of past measurements y∗<τ . The crucial detail for this representation is
that the observation model qθ(yt | xt,ut, t) is now time dependent, switching
from estimation to control at t = τ . For the Gaussian example in Section 4.1,
Σ<τ is the measurement noise and Σ-1

≥τ=αQ. A benefit of this view is that
the computation of active inference can now be easily compared to the classic
results of Kalman filtering and LQG (Fig. 1), and also scaled to nonlinear tasks
through approximate inference. Moreover, obtaining the policy π(·) using the
joint distribution qθ(xt,ut) is arguably a more informed approach compared to
direct policy search on an arbitrary policy class.

Prior Posterior y∗ z∗ lqr

x
1

x
2

0 20 40 60 80 100

t

u

Fig. 1. Linear Gaussian i2c performing state estimation and control following Section
5, with state x=[x1, x2]ᵀ, action u and [x, u]ᵀ as the observation space. With τ = 50,
for t < τ i2c performs state estimation under random controls. For t ≥ τ , i2c switches
to optimal control. This example is in the low noise setting, with a large prior on u,
to illustrate that i2c returns the LQR solution for the same initial state and planning
horizon.
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6 Conclusion

We have derived an equivalent formulation to active inference by consider-
ing partially-observed, inference-based optimal control, which has a principled
derivation and is well-suited for approximate inference. While we have delineated
state estimation as operating on past measurement and control as planning fu-
ture actions (Equation 15), both AI and i2c demonstrate the duality between
estimation and control due to the mathematical similarity when both are treated
probabilistically. We hope the inclusion of the CaI literature enables a greater
theoretical understanding of AI and more effective implementations through ap-
proximate inference.
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