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Abstract. The Free Energy Principle (FEP) and its corollary active
inference describe a complex theoretical framework with a substantial
statistical mechanics foundation that is often expressed in terms of the
Fokker-Planck equation. Easy-to-follow examples of this formalism are
scarce, leaving a high barrier of entry to the field. In this paper we provide
a worked example of an active inference agent as a hierarchical Gaussian
generative model. We proceed to write its equations of motion explicitly
as a Fokker-Planck equation, providing a clear mapping between theo-
retical accounts of FEP and practical implementation. Code is available
at github.com/biaslab/ai workshop 2020.
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1 Introduction

Theoretical treatments of the free energy Principle (FEP) and active inference
are often framed in terms of the Fokker-Planck equation [5,6,10,12] and related
flows. In this paper we aim to bridge a gap between theory and simulation by
providing a worked example of an active inference agent written directly in terms
of its Fokker-Planck equation. We provide a brief introduction to the Fokker-
Planck description of dynamical systems and implement an agent based on a
generative model structure common across the active inference literature. We
then successfully apply the agent to a context switching task where it learns to
track a harmonic oscillator.

2 The Fokker-Planck Equation for Dynamical Systems

The Fokker-Planck description of dynamical systems [5,6] starts by assuming
that the system dynamics can be described by stochastic Langevin equations
[5,8] of the form

ẋ =
dx

dt
= f(x) +

√
2Γ (x)W(t) , (1)
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where x denotes the N -dimensional state of the system, Γ (x) an N×M positive
semi-definite diffusion matrix and W(t) is a standard M -dimensional Wiener
process. Eq. 1 describes the evolution of a system under deterministic state-
dependent dynamics f(x) and a stochastic fluctuation (diffusion) term W(t).
Equivalently, we can consider the time derivative of the distribution generated
by Eq. 1 in terms of the Fokker-Planck equation

∂p(x, t)

∂t
= −

I∑
i=1

∂

∂xi
fi(x)p(x, t) +

I,J∑
i=1,j=1

∂2

∂xi∂xj
Γi,j(x)p(x, t) (2)

where both i and j index over dimensions in x. The Fokker-Planck equation
describes the time derivative of the distribution p(x, t) generated by Eq. 1 by a
deterministic drift component or drag force (the first term) and a random diffu-
sion process (the second term). The core move here is the switch from stochastic
realisations of the SDE in Eq. 1 to the deterministic dynamics of the distribu-
tion over realisations of the same process in Eq. 2. A steady-state solution to
the dynamics of Eq. 2 constitutes a vector field and can be written in potential
form [1,5,6,8,10] as

f(x) = (Q(x)− Γ (x))∇J(x) , (3)

where Q(x) denotes an anti-symmetric (Q = −QT ) curl matrix and Γ (x) a
positive semi-definite diffusion matrix. We use ∇ to denote the gradient and
J(x) is a potential function. For a proof of this relation, see [1,8]. Writing f(x)
in this form, the anti-symmetric structure of Q(x) describes a solenoidal flow
that is orthogonal to gradients of J(x). The positive semi-definiteness of Γ (x)
on the other hand leads to dissipative flow along gradients of J(x).

3 Laplace-encoded free energy and generative models

To apply the Fokker-Planck equation to active inference, we follow [5,6] and
let J(x) denote a variational free energy functional. We now need to specify
a generative model. A common choice in active inference literature [3,6] is a
hierarchical generative model of the form

µ1 = h1(µ0) + ω1 φ0 = g1(µ0) + w0

µ2 = h2(µ1) + ω2 φ1 = g2(µ1) + w1 (4)

...
...

We let µn denote internal states of the agent, φn sensory states and let hn(·) and
gn(·) denote arbitrary link functions. Further assuming all noise terms wn, ωn
are iid Gaussian, we can rewrite each layer of the hierarchical generative model
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p(µ0:n, φ0:n) as

p(µn+1|µn) = N (µn+1|µn, σ2
µn+1

) =
1√

2πσ2
µn+1

exp

(
− (µn+1 − hn+1(µn))2

2σ2
µn+1

)

p(φn|µn) = N (φn|µn, σ2
φn) =

1√
2πσ2

φn

exp

(
− (φn − gn(µn))2

2σ2
φn

)
(5)

where σ2
•n denotes prior variance at the n-th level of • ∈ {µ, φ}. Once the gen-

erative model has been specified, we need to constrain the recognition factors in
order to compute the required gradients. Following [3,6] we assume a fully fac-
torised Gaussian recognition density, also known as the mean-field variational
Laplace approximation. Under these assumptions the free energy reduces to a
sum of precision-weighted prediction errors between internal states at each level
µn and the level above µn+1, and internal µn and sensory states φn. This chain
can theoretically continue forever. To terminate the chain, we can assume exces-
sive variance (i.e., negligible precision) at the highest level under consideration
which renders higher order contributions to the free energy negligible. For a
thorough derivation we refer to [2,3]. Ignoring constant terms and summing over
levels, the free energy thus takes the form

J(µ0:n, φ0:n, a) =
∑
n

(
1

2σ2
µn+1

(µn+1 − hn+1(µn))2 +
1

2σ2
φn

(φn(a)− gn(µn))2
)
.

(6)

Note that we additionally assume that φn depends on active states a. This
is the inverse model assumption that augments the generative model [3,4]. The
purpose of the inverse model is to update active states by allowing the derivative
∂J
∂a through

ȧ =
∂a

∂t
= −∂J(µ0:n, φ0:n)

∂a
= −∂J(µ0:n, φ0:n)

∂φ0:n

∂φ0:n
∂a

(7)

where we explicitly mediate the effects of action on free energy through the
agents sensory states φn [3,4,6]. This move is usually justified by an appeal to
reflex arcs in a neuroscience context [3,4,9] and has successfully been applied in
simulation [3,6] as well as robotics [9]. Note that Eq. 7 is effectively a gradient
flow on free energy, following the functional form of Eq. 3.

4 A worked example

We proceed by defining an environmental process as a harmonic oscillator with
an added friction term. The environmental system dynamics are described by a
Hamiltonian (a potential function) that decomposes into potential and kinetic
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energy terms, plus added friction administered by the agent through action

H(x, ẋ, a) =
1

2m
x2︸ ︷︷ ︸

potential

+
1

2
kẋ2︸ ︷︷ ︸

kinetic

− ẋu tanh(a)︸ ︷︷ ︸
friction

. (8)

Here x denotes the position of the system, ẋ the velocity, m the mass, k is
a constant, u is a force term that bounds the amount of friction the agent can
administer and a still represents action. The system obeys standard Hamiltonian
dynamics

dx

dt
= −∂H

∂ẋ
,
dẋ

dt
=
∂H

∂x
. (9)

Hamiltonian dynamics are commonly applied to the description of conservative
systems [5]. However in the present example the additional friction term in Eq. 8
means the system no longer conserves energy. In other words, introducing action
dependent friction allows the agent to systematically add or subtract energy
from the system. If no action is taken (a = 0) the third term vanishes and
the environmental process describes a standard conservative simple harmonic
oscillator.
We let J(µ0:1, φ0, a) denote the free energy of a two-layer model that receives
observations only at the first level. The agent thus only observes position and not
velocity. Formally this means setting φ0 = x and omitting higher orders of φ. We
then define a new potential vector J ′ as the concatenation of the Hamiltonian of
the environmental process H(x, ẋ, a) and the free energy functional J(µ0:1, φ0, a)
of the agent

J ′ =

[
H(x, ẋ, a)

J(µ0:1, φ0, a)

]
⇒ ∇J ′ =



x
m

kẋ− u tanh(a)
1
σ2
µ1

(µ1 − h1(µ0)) + 1
σ2
φ0

(x− g0(µ0))
1
σ2
µ1

(h1(µ0)− µ1)

− 1
σ2
φ0

(
x− g0(µ0)

)
u sech2(a)

 . (10)

We further assume an accurate inverse model for the effect of action a on obser-
vations φ0. Concretely this means the agent is able to accurately calculate the
gradient flow described in Eq.7 which is given by

ȧ = −∂J(µ0:1, φ0)

∂φ0

∂φ0
∂a

=
1

σ2
φ0

(
x− g0(µ0)

)
u sech2(a) (11)

where sech(·) is the hyperbolic secant. This derivative can be found in 5th row
of ∇J ′. Note that the sign is opposite before multiplication by −Γ . Since the
agent does not observe velocity ẋ, the corresponding sensory prediction error
involving φ1 is absent at the second level (4th row of ∇J ′).
Concatenating the vector J ′ allows for simultaneous integration of the agent and
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the environment by using block matrices for Q and Γ . Assuming Hamiltonian
dynamics for the agent as well, we can write the block system matrices as

Q =


0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

 , Γ =


0 0 0 0 0
0 0 0 0 0
0 0 γ1 0 0
0 0 0 γ2 0
0 0 0 0 γ3

 ,x =


x
ẋ
µ0

µ1

a

 . (12)

Here x denotes the state vector of the combined system similarly to Eq. 3 and
Q encodes two blocks of Hamiltonian dynamics. Internal states of the agent
additionally perform gradient descent on J(µ0:1, φ0, a) with learning rates γ1
and γ2. Action is updated by gradient descent on J(µ0:1, φ0, a) with learning
rate γ3. Note that by virtue of the Fokker-Planck formalism, the learning rates
acquire an interpretation in terms of the amplitude of random fluctuations. In
other words, maintaining nonequilibrium steady state in a noisy environment
mandates high learning rates. Substituting Eq. 10 and Eq. 12 into Eq. 3 now
finishes the dynamics that underwrite active inference for a partition of states
(evolving under the dynamics of Eq. 3) into external states, internal states,
sensory states and action.

5 Results

We simulated the system for 50 timesteps with γ1 = γ2 = 0.1, γ3 = 1, σ2
•n = 0.1,

hn(µn) = gn(µn) = µn, m = k = 1,u = 0.5 and initial state x = 2, ẋ = 2, µ0 = 0,
µ1 = 0, a = 0. Note that the initial states of the agent and the environment are
different. At t = 25, we change the parameters of the environmental process,
setting m = 10, k = 0.1 and resetting the states of the environment to x =
10, ẋ = 2. This results in an abrupt change in the environmental process. The
task of the agent is then twofold: (1) it needs to learn environmental dynamics
to accurately predict incoming observations and (2) it needs to flexibly adapt
to a change in previously learnt dynamics. Results are shown in Fig. 5. After
an initial learning period we observe that the agent accurately learns to track
the environmental process. The agents active states settle into an oscillatory
pattern to smooth out the trajectory and dampen noise. When the environmental
process changes, we observe a new learning period as the agent adapts to the
context switch. Prediction errors are quickly attenuated and the agent resumes
accurately tracking the environmental process.

6 Discussion

In this paper we showed a worked example of an agent in the form of a common
model structure and specified its equations of motion directly in terms of a
Fokker-Planck equation. Writing the agent as a Fokker-Planck equation renders
the coupling between theory such as [5,6] immediate, with the goal of providing
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Fig. 1. Trajectory of agent and environmental process. Note the close correspondence
between the blue and green lines (x and µ0), showing that the agent succesfully learns
to predict the environmental process.

an entry point for researchers interested in FEP. A second and more subtle
point speaks to the Fokker-Planck equation as a way of writing equations of
motion. Writing system dynamics in terms of the Fokker-Planck equation allows
for interpreting the equations of motion as a “mechanics”. The agent presented
here operates under Hamiltonian mechanics but [5] opens up the possibility of
investigating quantum- or electro-mechanical agents as well since these can also
be written in terms of Q and Γ . Additionally, FEP literature offers a number
of alternative free energies that are available as alternatives for the potential
function J(x), for example the Expected, Generalised and constrained Bethe
free energies [7,11,13]. By combining choices for Q, Γ and J(x) it is immediately
clear that Fokker-Planck-based agents represent a sizeable class of agents that
are mostly unexplored in practical applications.
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